Flood disasters are frequent natural disasters that occur annually during the monsoon season and significantly impact urban areas. This area is characterized by impermeable concrete surfaces, which increase runoff and are particularly susceptible to flooding. Therefore, this study aims to adopt Bi-variate statistical methods such as frequency ratio (FR) and weight of evidence (WOE) to map flood susceptibility in an urbanized watershed. The study area encompasses an urbanized watershed surrounding the Chennai Metropolitan area in southern India. The essential parameters considered for flood susceptibility zonation include geomorphology, soil, land use/land cover (LU/LC), rainfall, drainage, slope, aspect, Topographic Wetness Index (TWI), and Normalized Difference Vegetation Index (NDVI). The flood susceptibility map was derived using 70% of randomly selected flood areas from the flood inventory database, and the other 30% was used for validation using the area under curve (AUC) method. The AUC method produced a frequency ratio of 0.806 and a weight of evidence value of 0.865 contributing to the zonation of the three classes. The study further investigates the impact of urbanization on flood susceptibility and is further classified into high, moderate, and low flood risk zones. With the abrupt change in climatic scenarios, there is an increase in the risk of flash floods. The results of this study can be used by policymakers and planners in developing a preparedness system to mitigate economic, human, and property losses due to floods in any urbanized watershed.
Read full abstract