Chemoresistant-epithelial ovarian cancer (EOC) has a poor prognosis, prompting the search for new therapeutic drugs. The diphenylbutylpiperidine (DPBP) class of antipsychotic drugs used in schizophrenia has shown anticancer effects. This study aimed to investigate the preclinical efficacy of penfluridol, fluspirilene, and pimozide (DPBP) using in vitro and in vivo models of EOC. Human EOC cell lines A2780, HeyA8, SKOV3ip1, A2780-CP20, HeyA8-MDR, and SKOV3-TR were treated with penfluridol, fluspirilene, and pimozide, and cell proliferation, apoptosis, and migration were assessed. The preclinical efficacy of DPBP was also investigated using in vivo mouse models, including cell lines and patient-derived xenografts (PDX) of EOC. DPBP drugs significantly decreased cell proliferation in chemosensitive (A2780, HeyA8, and SKOV3ip1) and chemoresistant (A2780-CP20, HeyA8-MDR, and SKOV3-TR) cell lines. Among these drugs, penfluridol exerted a relatively stronger cytotoxic effect on all cell lines. Penfluridol significantly increased apoptosis and inhibited migration of EOC cells. In the cell line xenograft mouse model with HeyA8, the penfluridol group showed significantly decreased tumor weight compared with the control group. In the paclitaxel-resistant model with HeyA8-MDR, the penfluridol group had significantly decreased tumor weight compared with the paclitaxel or control groups. Penfluridol exerted anticancer effects on the PDX model. Penfluridol exerted significant anticancer effects on EOC cells and xenograft models, including PDX. Thus, penfluridol therapy, as a drug repurposing strategy, might be a potential therapeutic for EOCs.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access