Abstract This review examines copper corrosion mechanisms and their key influencing factors, including microstructure effects, surface treatments, manufacturing conditions, temperature, water chemistry parameters, fluid velocity, and microbial effects in water-based systems, with a particular focus on heat exchangers. This addresses a critical gap in the existing literature, which often examines copper corrosion in a broader context. By critically analyzing the literature, the review provides an in-depth understanding of the factors that govern copper corrosion in heat exchanger applications. Copper corrosion in heat exchangers can have significant technical and social detrimental consequences, leading to substantial economic losses. By focusing on heat exchangers, the review offers valuable insights and best practices for engineers, researchers, and practitioners working with copper in this domain. Furthermore, the review evaluates the latest mitigation strategies, including advancements in material selection, surface treatments, water treatment techniques, and robust monitoring/maintenance methods. Finally, the review explores promising new concepts for corrosion prevention for long-term performance, paving the way for future research in developing innovative technologies and refining highly effective strategies under diverse operating conditions relevant to combat deleterious copper corrosion effects in heat exchanger applications.
Read full abstract