In this work, a long-wave infrared (LWIR) quantum dot (QD) spectrometer was constructed for the first time by integrating a 255-element HgSe QD filter array with an LWIR array detector. The filter array was fabricated using a combination inkjet printing strategy with eight types of T-dodecyl mercaptan-terminated HgSe QD inks. The stability and morphology of the QDs were improved by optimizing the purification methodology and ligand modification. Combined with the compressive-sensing-based least-squares linear regression (CS-LS) algorithm, the LWIR QD spectrometer achieved a spectral resolution of 5.4 cm-1 over a wide spectral range of 8 to 14 μm, enabling the detection of the chemical warfare agent simulant dimethyl methylphosphonate. This technology is expected to facilitate the development of smaller volumes and more accurate identification of various targets in the future. This paper offers an approach to fabricating low-cost LWIR spectrometers and promoting the scale-up applications of QD devices.