The low-energy chemical stereodynamics of these ion–molecule reactions D+ + D2 → D2 + D+, D+ + HD → DH + D+/D2 + H+, H+ + HD → H2 + D+/HD + H+ and H+ + H2 → H2 + H+ has been investigated by performing the quasi-classical trajectory calculations on the ground electronic state potential energy surface (11A′ PES). The polarization-dependent differential cross sections and the probability distributions of P(θ r ) and P(ϕ r ) have been calculated, compared and discussed within the center-of-mass frame and at the low collision energy of 100 meV. The calculation results indicate that the product scattering and the polarization of the product rotational angular momentum are sensitive to the reactant vibrational quantum number. Such sensitivity increases with the increasing value of mass factor. Moreover, the products from the reaction H+ + HD → HD + H+ show quite different scattering and polarization behaviors with reagent vibration excitation.