Glass is a substance that is present in most houses since glass-based items are made and consumed in relatively high quantities. This has led to the buildup of glass in concerning quantities all over the world, which is a problem for the environment. It is well known that glass has several advantageous physiochemical features that qualify it as an appropriate material for use in the construction industry as an aggregate. The features include being non-biodegradable, resistant to chemical assault, having low water absorption, having high hydraulic conductivity, having temperature-dependent ductility, having alterable particle gradation, and having a wide availability in a variety of forms and chemical compositions. Because of these qualities, glass has been used in various investigations and field tests conducted in civil engineering to evaluate its effectiveness as an engineering aggregate and to develop environmentally friendly management strategies for waste glass. These studies and research have utilized glass in various forms, such as fine recycled glass, medium recycled glass, coarse recycled glass, powdered glass, and glass-based geopolymers. This study focuses on research studies that present results on physicochemical, mechanical, and durability characteristics. These studies and research contain samples of pure glass or glass as replacement percentages in materials (0-100%), including but not limited to unbound granular materials (such as recycled concrete aggregates and crushed rock). In light of the information assembled in this review article, it is legitimate to claim that glass has strong promise as a material in various civil applications.