The modified biochars have positive effects in reducing heavy metal toxicity for plants. However, the mechanism and extent of these effects on mitigating arsenic toxicity and plant performance are not clear. Thus, a pot experiment was conducted as factorial to evaluate the potential of fresh and enriched biochars with potassium and magnesium nano-sulfates [potassium-enriched biochar (K-BC), magnesium-enriched biochar (Mg-BC) in individual and combined forms] on reducing arsenic toxicity (non-contamination, 50, and 100 mg NaAsO2 kg−1 soil) in basil plants. Biochar-related treatments reduced plant arsenic absorption rate (up to 24%), arsenic content of root (up to 38%) and shoot (up to 21%) and root tonoplast H+-ATPase activity (up to 30%). The fresh and particularly enriched biochars improved soil properties (pH, CEC, and available iron content), ferric chelate reductase activity, iron, potassium and magnesium contents of plant tissues, chlorophyll content index, photochemical efficiency of photosystem II, relative electron transport rate, leaf area, and basil growth (shoot and root dry weight). These results revealed that enriched biochars are useful soil amendments for improving physiological performance of plants via reducing heavy metal toxicity and enhancing cation exchange capacity, nutrient availability and ferric chelate reductase activity. Therefore, soil amendment by enriched biochars could be a sustainable solution for enhancing plant productivity in contaminated soils via mitigating environmental impacts. This is an environmentally friendly method for using the natural wastes to overcome the adverse effects of soil pollutants on medicinal plants.