A zero-dimensional steady-state simulation of microwave discharge in water vapor at atmos-pheric and reduced pressures and a constant gas temperature has been carried out. A model of a continuous stirring reactor is used. A joint solution of the balance equations for neutral and charged plasma components, the Boltzmann equation for plasma electrons, and the equation for the stationary distribution of the microwave field in a volume filled with plasma is carried out. The dependences of various parameters of thedischarge (the magnitude of the microwave field, the concentrations of all components) on the input specific power WVare obtained. It is shown that at reduced pressure the magnitude of the microwave field in the plasma is signifi-cantly lower, and the electron concentration is higher than at atmospheric pressure at the same applied specific power. At atmospheric pressure the water plasma is electronegative, and quasi-neutrality is maintained by the negative OH-ion in the range of the considered WV values. Transition from electronegative to electropositive plasma occurs at pressure of 30 Torr and ap-plied specific power of 60–70 kW/cm3
Read full abstract