Glyme-based lithium-ion electrolytes have received considerable attention from the scientific community due to their improved safety, as well as electrochemical and thermal stability over carbonate-based electrolytes. However, these electrolytes suffer from major drawbacks such as high viscosities. To overcome the challenges that hinder their full potential, the molecular description of glyme-based lithium electrolytes in the high-concentration regime, particularly in the solvate ionic liquid (SIL) and high-concentration electrolyte (HCE) regimes, is needed. In this study, model glyme-based electrolytes based on a lithium thiocyanate and either tetraglyme (G4) or a mixture of monoglyme (G1) and diglyme (G2) were investigated as a function of the solvent-to-lithium ratio using linear and nonlinear IR spectroscopies, in combination with ab initio computations as well as electrochemical methods . The transport properties reveal enhanced ionicities in the HCE and SIL regimes ([O]/[Li] ≤ 5) compared to the regular electrolytes (REs, with [O]/[Li] > 5) in both pure (G4) and mixed (G1:G2) glymes. IR and ab initio computations relate these larger ionicities to the higher concentration of charged aggregates in the HCE and SIL electrolytes ([O]/[Li] ≤ 5). Moreover, it was observed that the use of mixed glymes appears to have a minimal effect on the transport properties of REs but exhibits deleterious effects on SILs. Overall, the results provide a molecular framework for describing the local structure of lithium glyme-based electrolytes and demonstrate the key role that the nature of glyme solvation plays in the molecular structure and consequently the macroscopic properties of the Li-glyme SILs, HCEs, and REs.