The Ag-Sn alloys are famous ancient intermetallics, with the Ag3Sn being a crucial component of the phase diagram. Recently, Ag3Sn nanoparticles showcase efficient catalytic CO oxidation capabilities. Here, structural features and stability of (Ag3Sn)n (n = 1–6) clusters are first analyzed in detail. The results reveal that structures of them evolve from cages to close-packed icosahedra, where Ag are distributed on cores and gradually aggregated, whereas Sn occupy edge positions and become dispersed. Moreover, the icosahedral (Ag3Sn)3 has a higher stability than that of its neighbors and can maintain the structural integrity at 700 K. The molecular orbitals reveal that the (Ag3Sn)3 has an electronic open-shell configuration of 1S21P61D102S21F1, which is confirmed by the density of states. Electrostatic potential surfaces show that (Ag3Sn)n have significant electron-deficient σ-hole regions at Ag sites, which can make CO stretching frequencies and bond lengths have red-shifts. Adsorption energies between (Ag3Sn)n and CO display odd–even oscillations, ranging from (0.43–0.68) eV, and the direction of charge flows is from CO → clusters. Our work provides inferences to structure evolutions and adsorptions of the Ag3Sn alloy at the atomic level.
Read full abstract