Allomerization of bacteriochlorophyll a (Bchl a) was studied under various reaction conditions. Bchl a on stirring with KOH/propanol produced an "unstable bacteriochlorin", which decomposed in acidic conditions to give a complex mixture containing bacteriopurpurin a as a principal component. The yields of other compounds varied and were found to be dependent on reaction condition. The structures of the isolated porphyrins, chlorins, and bacteriochlorins, related to Bchl a, were assigned on the basis of 1D, 2D NMR (ROESY), and mass spectroscopy analyses. The presence of fused anhydride rings in porphyrin, chlorin, and bacterichlorin systems showed a significant influence on their optical properties. Compared to bacteriochlorophyll a and bacteriopheophytin, the related structurally modified analogues, e.g., the bacteriopurpurin a, 13(1)/15(1)-N-alkyl isoimide, and the imide analogues were found to be more stable with a significant difference in spectroscopic properties. Bacteriochlorins containing anhydride, imide, or isoimide cyclic rings demonstrated a significant bathochromic shift of their Q bands in their electronic absorption spectra. Under basic conditions the formation of the 12-hydroxymethyl, 12-formyl, and 12-methylene analogues as byproducts from the 12-methyl-bacteriopurpurin-N-hexylimide could be due to subsequent oxidation of the vinylogous enolate intermediates. To investigate the effect of the central metal in the electronic spectra, the stable bacteriopurpurin-18-N-hexylimide was converted to a series of metal complexes [Zn(II), Cd(II), and Pd(II)] by following the direct or transmetalation approaches. Compared to the free-base analogue, these complexes showed a remarkable shift in their electronic absorption spectra.