The kinetic characteristics of thermal frequency phonons in the region of helium temperatures in ceramic samples of the Ce1–xGdxO2–y electrolyte solid solution have been studied. To explain the temperature dependence of the phonon mean free path, we used the previously performed calculations of the energy of vacancy formation in the anion sublattice of a solid solution of zirconium dioxide stabilized by yttrium ZrO2:Y2O3 (YSZ) with a similar crystal structure. It is shown that in the Ce1–xGdxO2–y system under study, the formation of structural defects associated with the presence of vacancies in the anion sublattice with energy Δ = 8.53 K is possible. It has been established that analysis of the temperature dependences of the YSZ heat capacity allows one to trace the degree of disorder (amorphization) of the solid solution depending on its level of stabilization.