Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin, SW China, the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements, especially the source rock. The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed, the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized, and the favorable exploration targets are proposed. Under the control of multiple extensional-convergent tectonic cycles, the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks, and can be divided into the Cambrian, Silurian and Permian whole petroleum systems. These whole petroleum systems present mainly independent hydrocarbon accumulation, containing natural gas of affinity individually. Locally, large fault zones run through multiple whole petroleum systems, forming a fault-controlled complex whole petroleum system. The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation, marginal platform facies-controlled gas reservoirs, and intra-platform fault- and facies-controlled gas reservoirs is common in the whole petroleum system, with a stereoscopic accumulation and orderly distribution pattern. High-quality source rock is fundamental to the formation of large gas fields, and natural gas in a whole petroleum system is generally enriched near and within the source rocks. The development and maintenance of large-scale reservoirs are essential for natural gas enrichment, multiple sources, oil and gas transformation, and dynamic adjustment are the characteristics of marine petroleum accumulation, and good preservation conditions are critical to natural gas accumulation. Large-scale marginal-platform reef-bank facies zones, deep shale gas, and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin.
Read full abstract