Lung adenocarcinoma (LUAD), as the most common type of lung cancer, poses a significant threat to public health. Tumor heterogeneity plays a crucial role in carcinogenesis, which could be largely deciphered by next-generation sequencing (NGS). We obtained and screened single-cell RNA sequencing (scRNA-seq) data from 16 LUAD samples, and endothelial cells (ECs) were grouped into three clusters. The origin of EC differentiation was explored by pseudo-time analysis. CellChat analysis was used to detect potential communication between ECs and malignant cells, and gene regulatory network analysis was used to identify changes in transcription factor activity. We explored the prognosis of specific ECs clusters and their effects on the tumor microenvironment (TME) at the bulk transcriptome level. 5-Ethynyl-2'- deoxyuridine (EdU) and Ki-67 staining were conducted to study the proliferative phenotype of LUAD cell lines. Western blotting targeting the phosphorylation of PI3K-AKT proteins was utilized for determination of the downstream pathway of NCL. COL3A1-positive ECs showed the highest crosstalk interaction with malignant cells, indicating that they have important effects on driving LUAD carcinogenesis. Vascular endothelial growth factor (VEGF) signaling pathway was identified as the main signaling pathway, mediating signal transduction from malignant cells. The TME-related genes of COL3A1-positive ECs were significantly more highly expressed. COL3A1-positive ECs showed unique metabolic and immune characteristics, as well as highly activated metabolic signaling pathways and inflammatory responses. Importantly, LUAD patients with low COL3A1-positive ECs scores displayed an inferior prognosis outcome and a higher risk of metastasis. The key target gene NCL, which is involved in the interaction between epithelial cells and cancer cells, has been identified through screening. Flow cytometry showed that knockdown of NCL prompted the apoptosis of A549 and NCI-H1299. Western blotting showed that knockdown of NCL decreased the phosphorylation of AKT and PI3K, which identified the downstream pathway of NCL. COL3A1-positive ECs have important effects on the development of LUAD and the formation of an immune microenvironment. Furthermore, we identified a key target gene, NCL, which is involved in the interaction between endothelial cells and cancer cells. NCL also affected the apoptosis and proliferation in LUAD through the PI3K-AKT pathway.