Humans and other animals develop remarkable behavioral specializations for identifying, differentiating, and acting on classes of ecologically important signals. Ultimately, this expertise is flexible enough to support diverse perceptual judgments: a voice, for example, simultaneously conveys what a talker says as well as myriad cues about her identity and state. Mature perception across complex signals thus involves both discovering and learning regularities that best inform diverse perceptual judgments, and weighting this information flexibly as task demands change. Here, we test whether this flexibility may involve endogenous attentional gain to task-relevant dimensions. We use two prospective auditory category learning tasks to relate a complex, entirely novel soundscape to four classes of "alien identity" and two classes of "alien size." Identity, but not size, categorization requires discovery and learning of patterned acoustic input situated in one of two simultaneous, frequency-delimited bands. This allows us to capitalize on the coarsely segregated frequency-band-specific channels of auditory tonotopic maps using fMRI to ask whether category-relevant perceptual information is prioritized relative to simultaneous, uninformative information. Among participants expert at alien identity categorization, we observe prioritization of the diagnostic frequency band that persists even when the diagnostic information becomes irrelevant in the size categorization task. Tellingly, the neural selectivity evoked implicitly in categorization aligns closely with activation driven by explicit, sustained selective attention to other sounds presented in the same frequency band. Additionally, we observe fingerprints of individual differences in the learning trajectories taken to achieve expert-level categorization in patterns of neural activity associated with the diagnostic dimension. In all, this indicates that acquiring categories can drive the emergence of acquired attentional salience to dimensions of acoustic input.