Multiple sclerosis (MS) is an inflammatory demyelinating disease with neurodegenerative features causing risk for neurologic irreversible disability over time. Examination of normal-appearing white matter (NAWM) changes in MS by proton magnetic resonance spectroscopy (1H-MRS), may detect diffuse white matter pathology that is associated with neurodegeneration. In this observational study of in total twenty-six patients with MS, starting treatment with dimethyl fumarate (DMF), we measured the absolute concentration of metabolites in periventricular NAWM using 1H-MRS at baseline and after one and three years of treatment. Metabolite concentrations were analyzed both cross-sectionally, in relation to 10 controls and longitudinally in relation to disease activity. Patients with MS had higher concentrations of myo-inositol (mIns) in NAWM at baseline compared with controls (mean 5.98 ± 1.37 (SD) and 4.32 ± 1.16 (SD), p<0.01, independent samples t-test). The disease duration was inversely correlated with concentrations of total N-acetylaspartate and N-acetylaspartylglutamate (tNA) (r = -0.62, p<0.01) in NAWM as well as positively to the ratio of mIns and tNA (r = 0.51, p = 0.03). Metabolite concentrations during one-year (n = 19) and three-years (n = 11) follow-up were generally stable. The dropouts were caused by treatment switch after one year, mainly due to new MRI activity. Cross-sectional analyses showed that there was an inverse correlation between concentrations of tNA and mIns at both baseline and at 1 and 3-years follow-up (r = -0.44 to -0.65, p = 0.04 to 0.004). Metabolite concentrations were stable during 1-year follow-up independently of disease activity. Higher concentrations of the astrogliosis marker mIns in MS compared to controls, the inverse relation between MS disease duration and the neuroaxonal integrity marker tNA, as well as the consistent inverse relation between these two metabolites during follow-up, showed that non-lesional white matter pathology is present in this cohort of MS patients in early disease stages. However, metabolite concentrations during follow-up were generally stable and did not reflect differences in disease activity among patients.
Read full abstract