The emission reduction of atmospheric pollutants during the COVID-19 caused the change in aerosol concentration. However, there is a lack of research on the impact of changes in aerosol concentration on carbon sequestration potential. To reveal the impact mechanism of aerosols on rice carbon sequestration, the spatial differentiation characteristics of aerosol optical depth (AOD), gross primary productivity (GPP), net primary productivity (NPP), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FPAR), and meteorological factors were compared in the Sanjiang Plain. Pearson correlation analysis and geographic detector were used to analyze the main driving factors affecting the spatial heterogeneity of GPP and NPP. The study showed that the spatial distribution pattern of AOD in the rice-growing area during the epidemic was gradually decreasing from northeast to southwest with an overall decrease of 29.76%. Under the synergistic effect of multiple driving factors, both GPP and NPP increased by more than 5.0%, and the carbon sequestration capacity was improved. LAI and FPAR were the main driving factors for the spatial differentiation of rice GPP and NPP during the epidemic, followed by potential evapotranspiration and AOD. All interaction detection results showed a double-factor enhancement, which indicated that the effects of atmospheric environmental changes on rice primary productivity were the synergistic effect result of multiple factors, and AOD was the key factor that indirectly affected rice primary productivity. The synergistic effects between aerosol-radiation-meteorological factor-rice primary productivity in a typical temperate monsoon climate zone suitable for rice growth were studied, and the effects of changes in aerosol concentration on carbon sequestration potential were analyzed. The study can provide important references for the assessment of carbon sequestration potential in this climate zone.
Read full abstract