Microplastics (MPs) are recognized as a significant challenge to water treatment processes due to their ability to adsorb or accumulate alginate foulants, impacting the coagulation-ultrafiltration (CUF) process. In this study, the mechanisms of membrane fouling caused by MPs under varying dosages of polymeric aluminum chloride (PAC) coagulant in the CUF process were investigated. It was revealed that MPs contribute to membrane fouling, which initially intensifies and then alleviates as coagulant concentration increases, with a turning point at 0.05 mM PAC dosage. The most significant alleviation of membrane fouling was observed at 0.2 mM PAC dosage. An in-depth analysis of interfacial interaction energy changes during filtration was conducted using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, demonstrating how MPs alter the interaction forces between foulants and the membrane surface, leading to either the exacerbation or mitigation of fouling. Additionally, it was shown that at optimal coagulant concentrations, the presence of MPs promotes the formation of a loose and porous cake layer, disrupting the original structure and creating a more open block structure, thereby alleviating membrane fouling. These findings provide valuable insights for optimizing the CUF process in microplastic-containing water treatment, presenting a novel approach to enhancing efficiency and reducing membrane fouling.