Experimental support for the dominance of van der Waals dispersion forces in aromatic stacking interactions occurring in organic solution is surprisingly limited. The size-dependence of aromatic stacking in an organic solvent was examined. The interaction energy was found to vary by about 7.5 kJ mol(-1) on going from a phenyl-phenyl to an anthracene-pyrene stack. Strikingly, the experimental data were highly correlated with dispersion energies determined using symmetry-adapted perturbation theory (SAPT), while the induction, exchange, electrostatic, and solvation energy components correlated poorly. Both the experimental data and the SAPT-dispersion energies gave high-quality correlations with the change in solvent accessible area upon complexation. Thus, the size-dependence of aromatic stacking interactions is consistent with the dominance of van der Waals dispersion forces even in the presence of a competing polarizable solvent.