Proton beam therapy, when integrated with MRI guidance, presents complex dosimetric challenges due to interactions with magnetic fields. Prior research has emphasized the nuanced impact of magnetic fields on dosimetry. For thermoluminescent dosimeters (TLDs) the electron-return effect, alongside small air cavities surrounding the pellets, can lead to nonuniform dose distributions. Future MR-guided proton therapy will require reliable methods for end-to-end tests and dosimetric audits, which so far are often performed using TLDs equipped with phantoms. This implicates the necessity of accounting for theseinteractions. This study investigates the influence of magnetic fields on TLDs at two proton energies, using magnetic field strengths of 0, 0.25, and , aiming to clarify their impact on dose measurementaccuracy. The study was conducted at a synchrotron-based ion beam therapy beam line, enhanced by a resistive dipole magnet for creating magnetic fields up to to simulate MR-guided proton therapy. Individual correction factors were applied for TLD measurements. The impact of air gaps on the TLD signal was evaluated using three dedicated TLD holders with air gaps of 0.1, 0.25, and 0.5 mm surrounding the TLD pellets using the highest available proton energy of . Additionally, the influence of the magnetic field strength on the TLD response was evaluated for two proton energies of and . The study found no statistically significant variation in TLD dose response attributable to changes in the air gap or the presence of magnetic fields. A power analysis indicated an upper limit on a potential change in dose-response as small as 1.5%. The findings suggested that the impact of air gap variations and magnetic field strengths on the TLD response was below the detection threshold of TLD sensitivity. This emphasizes the suitability of TLDs for dose measurement in MR-guided proton therapy, indicating that additional correction factors may not be necessary despite the influence of magneticfields.
Read full abstract