BackgroundCigarette smoke (CS) is the main cause in the development of chronic obstructive pulmonary disease (COPD), the pathogenesis of which is related to an extended inflammatory response. In this study, we investigated the effect of low and high doses of gas phase cigarette smoke (GPS) on cultured lymphocyte progenitor cells, using techniques to assess cell viability and to elucidate whether cells die of apoptosis or necrosis upon exposure to different doses of GPS.MethodsIn our approach we utilised a newly-established system of exposure of cells to GPS that is highly controlled, accurately reproducible and simulates CS dosage and kinetics that take place in the smokers' lung. This system was used to study the mode of cell death upon exposure to GPS in conjunction with a range of techniques widely used for cell death studies such as Annexin V staining, activation of caspase -3, cytoplasmic release of cytochrome C, loss of mitochondrial membrane potential and DNA fragmentation.ResultsLow doses of GPS induced specific apoptotic indexes in CCRF-CEM cells. Specifically, cytochrome C release and cleaved caspase-3 were detected by immunofluorescence, upon treatment with 1-3 puffs GPS. At 4 h post-exposure, caspase-3 activation was observed in western blot analysis, showing a decreasing pattern as GPS doses increased. Concomitant with this behaviour, a dose-dependent change in Δψm depolarization was monitored by flow cytometry 2 h post-exposure, while at 4 h Δψm collapse was observed at the higher doses, indicative of a shift to a necrotic demise. A reduction in DNA fragmentation events produced by 5 puffs GPS as compared to those provoked by 3 puffs GPS, also pointed towards a necrotic response at the higher dose of GPS.ConclusionCollectively, our results support that at low doses gas phase cigarette smoke induces apoptosis in cultured T-lymphocytes, whereas at high doses GPS leads to necrotic death, by-passing the characteristic stage of caspase-3 activation and, thus, the apoptotic route.
Read full abstract