We present the magnetic phase diagram of a spin-1/2 chain antiferromagnet Sr$_2$CuO$_3$ studied by ultrasound phase-sensitive detection technique. We observe an enhanced effect of external magnetic field on the ordering temperature of the system, which is in the extreme proximity to the quantum critical point. Inside the N\'eel ordered phase, we detect an additional field-induced continuous phase transition, which is unexpected for a collinear Heisenberg antiferromagnet. This transition is accompanied by softening of magnetic excitation mode observed by electron-spin resonance, which can be associated with a longitudinal (amplitude) mode of the order parameter in a weakly-coupled system of spin-1/2 chains. These results suggest transition from a transverse collinear antiferromagnet to an amplitude-modulated spin density wave phase induced by magnetic field.