Photonic heterostructures with codable properties have shown great values as versatile information carriers at the micro- and nanoscale. These heterostructures are typically prepared by a step-by-step growth or post-functionalization method to achieve varied emission colors with different building blocks. In order to realize high-throughput and multivariate information loading, we report here a strategy to integrate polarization signals into photonic heterojunctions. A U-shaped di-Pt(II) complex has been assembled into highly polarized yellow-phosphorescent crystalline microrods (Y-rod) by strong intermolecular Pt⋅⋅⋅Pt interaction. Upon end-initiated desorption of the incorporated CH2Cl2 solvents, the Y-rod is transformed in a domino fashion into tri-block polarized photonic heterojunctions (PPHs) with alternate red-yellow-red emissions or red-phosphorescent microrods (R-rods). The red emissions of these structures are also highly polarized; however, their polarization directions are just orthogonal to those of the yellow phosphorescence of the Y-rod. With the aid of a patterned mask, the R-rod can be further programmed into multi-block PPHs with precisely controlled block sizes by side-allowed adsorption of CH2Cl2 vapor. X-ray diffraction analysis and theoretical calculations suggest that the solvent-regulated modulation of the crystal packing and excited-state property is critical for the construction of these PPHs.
Read full abstract