Herein we demonstrate that polyethylene-like bioderived, biodegradable, and fully recyclable unbranched aliphatic polyesters, such as PE-2,18, develop hexagonal crystal structures upon quenching from the melt to temperatures <∼50 °C and orthorhombic-like packing at higher quenching temperatures or after isothermal crystallization. Both crystal types are layered. While all-trans CH2 packing characterizes the structure of the orthorhombic-like form, there is significant conformational disorder in the staggered long CH2 sequences of the hexagonal crystals. On heating, the hexagonal crystals transform to the orthorhombic type at ∼60 °C via melt recrystallization, but no change is apparent during heating samples with the orthorhombic form up to the melting point (∼95 °C). The hexagonal structure is of interest not only because it develops under very rapid quenching from the melt but also because under uniaxial tensile deformation it undergoes a stretch-induced transformation to the orthorhombic structure. Compared to deformation of orthorhombic specimens that maintain the same crystal type, such transformation results in larger strains and enhanced strain hardening, thus representing a desired toughening mechanism for this type of polyethylene-like materials.