Abstract Aims Litterfall at a global scale is affected by climate, edaphic features and vegetation structure, with litter production increasing from grasslands to forests following the rise in standing biomass. However, at landscape scales, the same relationship between litter production and vegetation structure has rarely been studied and comparisons of litterfall patterns between adjacent, structurally distinct communities are lacking. Here, we use a standardized methodology to describe the structural differences among four savanna physiognomies and analyze their relationship with changes in litterfall across the Cerrado. Methods We evaluated the woody vegetation structure and composition in 48 sites, equally distributed across four physiognomies and monitored the monthly litter production from April 2014 to March 2015. Important Findings Results showed that the density, basal area, cylindrical volume and aboveground biomass of woody vegetation differ among physiognomies, increasing consistently from cerrado ralo, cerrado típico, cerrado denso and cerradão. Indeed, we found a strong and positive relationship between aboveground biomass and annual litter production, with litter yield increasing from 0.9 to 8.4 Mg ha−1 across different physiognomies, following the increment in vegetation structure. Monthly production was seasonal and similar among vegetation types, increasing during the dry season. Leaves comprised the dominant fraction (approx. 85%) and litterfall seasonality primarily resulted from the concentration of leaf shedding during dry months. However, the temporal pattern of litterfall throughout the year showed a gradual reduction in the seasonality from open to closed vegetation types, likely following the decrease of deciduous species abundance in the plant community. Our results showed that changes in vegetation structure may affect spatial and temporal litterfall patterns in different physiognomies, which co-occur across the Cerrado landscape, with potential implications for the overall functioning of this ecosystem. Moreover, these findings highlight the use of standardized methods as essential to correctly compare litterfall patterns among different environments.
Read full abstract