Bacillus cereus, a global threat, is one of the major causes of toxin-induced foodborne diseases. However, a comprehensive assessment of the prevalence and characteristics of B. cereus worldwide is still lacking. Here, we applied whole-genome sequence analysis to 191 B. cereus collected in Africa, America, Asia, Europe, and Oceania from the 1900s to 2022, finding that CC142 dominated the global B. cereus clonal complex. The results provided direct evidence that B. cereus could spread through the food chain and intercontinentally. B. cereus from different generations worldwide showed coherence in the antibiotic-resistant gene and virulence and biofilm gene profiles, although with high genomic heterogeneity. The BCI-BCII-vanZF-fosB profiles and virulence and biofilm genes were detected at high rates, and we emphasized that B. cereus would pose a serious challenge to global public health and clinical treatment.IMPORTANCEThis study first emphasized the prevalence, genetic characteristics, and pathogenicity of Bacillus cereus worldwide from the 1900s to 2022 using whole-genome sequence analysis. The CC142 dominated the global Bacillus cereus clonal complex. Moreover, we revealed a close evolutionary relationship between the isolates from different sources. B. cereus isolates from different generations worldwide showed coherence in potential pathogenicity, although with high genomic heterogeneity. The BCI-BCII-vanZF-fosB profiles and virulence and biofilm genes were detected at high rates, and we emphasized that B. cereus would pose a serious challenge to global public health and clinical treatment.
Read full abstract