Ni-doped CeO2 thin films were prepared under Ar+ atmosphere on glass substrates using rf magnetron sputtering. To assess the properties of the prepared thin films, the influence of various amounts of Ni dopant on structural, morphological, optical, vibrational, compositional and magnetic properties of the CeO2 films were studied by using X-Ray diffraction (XRD), atomic force microscope (AFM), photoluminescence (PL), micro-Raman, X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer (VSM). XRD patterns for all the samples revealed the expected CeO2 cubic fluorite-type structure and Ni ions were uniformly distributed in the samples. AFM images of the prepared samples indicate high dense, columnar structure with uniform distribution of CeO2. Room-temperature photoluminescence (PL) and micro-Raman spectroscopic studies revealed an increase of oxygen vacancies with higher concentration of Ni in CeO2. XPS results confirm the presence of Ni2p, O1s and Ce and depict that cerium is present as both Ce4+ and Ce3+ oxidation states in Ce1−xNixO2 (x=15%) thin film. Field dependent magnetization measurements revealed a paramagnetic behavior for pure CeO2, while a ferromagnetic behavior appeared when Ni is doped in CeO2 films. Doping dependent magnetization measurements suggest that the observed ferromagnetism is due to the presence of metallic Ni clusters with nanometric size and broad size distribution.