The environmental risks of synthetic polymers drive the need for innovative and sustainable film and packaging solutions. This study optimized the formulation of films composed of alginate derived from the brown seaweed Dictyota mertensii (ADM), glycerol, beeswax, and tween 80, aiming to improve their properties. A simplex-centroid blend design was employed to develop and optimize the composite films. The films were characterized based on their morphological properties, moisture content (MC), contact angle (CA), solubility (S), water vapor permeability (WVP), color parameters (L*, a*, and b*), opacity, tensile strength (TS), elongation at break (EB), and elastic modulus (E). Contour surfaces were plotted from the studied variables, fourth-order polynomial models were predicted, the influence of the blend components was analyzed, and the response variables were subjected to analysis of variance (ANOVA) and the F test with 95% confidence. The predicted conditions were experimentally validated. MC, WVP, solubility, opacity, a*, and b* were minimized, whereas CA, L*, TS, EB, and E were maximized, resulting in MC=6.85%, WVP=16.37 g.mm/h.kPa.m2, S=28.87%, CA=83.86°, Opacity=5.60 AU.nm.mm-1, L*=70.31, a*=4.79, b*=21.00, TS=11.76 MPa, EB=12.70%, and E=96.47 MPa. The overall desirability index was 0.70, resulting in an optimal biopolymer matrix of 75.00% ADM, 5.00% glycerol, 7.50% beeswax, and 12.50% Tween 80. The results highlight the potential of alginate films made from the brown seaweed Dictyota mertensii and the sustainable use of natural marine resources.
Read full abstract