On an analytic Riemannian manifold (M,g), several authors have studied the Taylor expansion for the volume of geodesic balls under the exponential mapping. In the foregoing paper [1] we studied a more general structure (M,D,g), where D is a torsion-free and Ricci-symmetric connection. We calculated the Taylor expansion up to order (n+4) for the volume of what we called a generalized geodesic ball under the exponential mapping in case that all metric notions are Riemannian, while the exponential mapping is induced from the connection D. For the structure % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuam% aaBaaaleaacaaIXaGaaGimaaqabaGccqGH9aqpciGGSbGaaiOBaiaa% ysW7caWGRbWaaSbaaSqaaiaadsfacaaIXaaabeaakiaac+cacaWGRb% WaaSbaaSqaaiaadsfacaaIYaaabeaakiabg2da9iabgkHiTmaabmaa% baGaamyramaaBaaaleaacaWGHbaabeaakiaac+cacaWGsbaacaGLOa% GaayzkaaGaey41aq7aaiWaaeaadaqadaqaaiaadsfadaWgaaWcbaGa% aGOmaaqabaGccqGHsislcaWGubWaaSbaaSqaaiaaigdaaeqaaaGcca% GLOaGaayzkaaGaai4laiaacIcacaWGubWaaSbaaSqaaiaaikdaaeqa% aOGaaGjbVlaadsfadaWgaaWcbaGaamysaaqabaGccaGGPaaacaGL7b% GaayzFaaaaaa!5C4A! $(M,D,{\cal G})$ the coefficients of the Taylor expansion are much more complicated than in the Riemannian case. It is one of the main objectives of the present paper to study centroaffine hypersurfaces in Euclidean space, their geometric invariants which appear in the very complicated coefficient of order (n+4), and their behaviour under polarization (inversion at the unit sphere). Our results complement applications in the foregoing paper [1], where mainly the coefficients up to order (n+2) and geometric consequences have been studied.