Structuralized cementation has emerged as a promising method for reinforcing excavated slopes. The Discrete Element analysis is conducted on the structuralized cemented slopes under excavation with its validity verified through centrifuge model tests. The results indicate that structuralized cemented slopes exhibit progressive failure from the bottom to the top under excavation conditions. As the slope elevation decreases, the failure mode transitions from tension failure to shear failure, due to the presence of tensile stress only in the upper part of the slope. Microscopically, structuralized cementation prevents contact breakage, reducing fabric anisotropy and the variation of contact orientation from the vertical direction. Macroscopically, it increases the safety limit of slopes. The significant coupling between fabric evolution localization and local failure explains the failure mechanism of structuralized cemented slopes under excavation conditions. Increasing the size of the solidification zone reduces the localization extent of fabric evolution, thereby reinforcing the slope.
Read full abstract