Wheat (Triticum aestivum L.) is critical to food security worldwide. Wheat dwarf bunt is caused by Tilletia controversa Kühn and can cause 70-80% losses under severe condition (Trione et al. 1989; Xu et al., 2021). In May 2022, we observed dwarf bunt disease in six fields grown with spring cultivar (Glaxy-13) in District Swat, KPK-Pakistan. Infected plants had mottling and flecking on leaves, a greater number of tillers and were smaller than healthy plants. Diseased wheat head spikes were larger, wider and thicker, had bunted kernels (sori) filled with brown-black teliospores and a strong odor like that of rotten fish. Individual fields showed 10% infected plants while no dwarf bunt was recorded in nearby fields. About 150 heads exhibiting bunted kernels were collected among the six fields. Kernels were surface sterilized with 30% NaClO for 5 min after crushing by a centrifuge machine and washed with ddH20 three times. The teliospore suspension (1×106 spores/mL) was spread on 2% soil agar plates in a growth chamber (MLR 352 H, Panasonic, USA) and incubated at 5°C with 60% relative humidity for 60 days to test for T. controversa germination or at 16°C and 60% relative humidity for 15 days (MLR 352 H, Panasonic, USA) to test for T. caries and T. laevis germination. Teliospores germinated only on plates kept at 5°C. Teliospores were morphologically identified as a T. controversa from the infected samples. They ranged in size from 15.0 to 20.5 µm diam. and the walls had deep reticulations surrounded by a transparent sheath, differing from T. laevis which has smooth teliospores and T. caries which has no sheath and reticulations on the surface (Mathre 1996). To further confirm Tilletia spp. identification, genomic DNA of our two isolates (gmd123 and gmd1234) was obtained using an extraction kit (TransGen, Beijing, China). The internal transcribed spacer (ITS) region was amplified by using ITS1/4 (White et al. 1990). A BLAST search with GenBank accession no. OR366448 and OR366450 provided additional evidence the isolates belong to the complex of species that includes the three bunt species causing diseases on wheat, with 100% matches to verified sequences for T. controversa (eg. EU257561) but also to T. laevis and T. caries. Based on disease symptoms, teliospore morphology, germination at 5°C but not at 16°C, the bunt fungus was identified as T. controversa. To fulfill Koch’s postulates, 10 mL (106 spores/mL) of germinated teliospores were injected into rhizosphere soil of Galaxy-13 cultivar at 2 leaves unfolded growth stage (Zadoks 12) and 2 mL (106 spores/mL) were injected into heads of same plants at growth stages Zadoks 61-65 with a syringe. Plants injected with sterile ddH2O were used as a control. Inoculated plants were grown in a growth chamber at 8°C with 50% humidity and 24 h light. After one month at the ripening stage, the bunted kernels of the inoculated plants were filled with black teliospores releasing a fishy smell, and the control plants did not have bunted kernels. Under an optical microscope, teliospores from the inoculated plants had reticulation surface and were measured 15 to 20.5 µm in diameter, similar to the teliospores of bunt heads from the fields. To the best of our knowledge, this is the first report of T. controversa causing dwarf bunt in district Swat, KPK-Pakistan. Because the pathogen is seedborne and soilborne, the disease may become a high risk to wheat production in Pakistan. Therefore, detection of this pathogen is very important to control the disease on time.
Read full abstract