In mammals, many types of psychological stressors elicit a variety of sympathoexcitatory responses paralleling the classic fight-or-flight response to a threat to survival, including increased body temperature via brown adipose tissue thermogenesis and cutaneous vasoconstriction, and increased skeletal muscle blood flow via tachycardia and visceral vasoconstriction. Although these responses are usually supportive for stress coping, aberrant sympathetic responses to stress can lead to clinical issues in psychosomatic medicine. Sympathetic stress responses are mediated mostly by sympathetic premotor drives from the rostral medullary raphe region (rMR) and partly by those from the rostral ventrolateral medulla (RVLM). Hypothalamomedullary descending pathways from the dorsomedial hypothalamus (DMH) to the rMR and RVLM mediate important, stress-driven sympathoexcitatory transmission to the premotor neurons to drive the thermal and cardiovascular responses. The DMH also likely sends an excitatory input to the paraventricular hypothalamic nucleus to stimulate stress hormone release. Neurons in the DMH receive a stress-related excitation from the dorsal peduncular cortex and dorsal tenia tecta (DP/DTT) in the ventromedial prefrontal cortex. By connecting the corticolimbic emotion circuit to the central sympathetic and somatic motor systems, the DP/DTT → DMH pathway plays as the primary mediator of the psychosomatic signaling that drives a variety of sympathetic and behavioral stress responses. These brain regions together with other stress-related regions constitute a central neural network for physiological stress responses. This network model is relevant to understanding the central mechanisms by which stress and emotions affect autonomic regulations of homeostasis and to developing new therapeutic strategies for various stress-related disorders.