The paper discusses the main issues that arise while developing and implementing automatic process control systems (APCS) in relation to the technological operations of balancing quartz hemispherical resonators of solid-state wave gyroscopes. For this, the article gives a general algorithm for performing the technological process of resonator balancing; block diagrams of the automatic process control system of balancing and the general algorithm for balancing the resonators. The latter discloses internal algorithms for determining the physical parameters of the gyroscope resonator, for making a decision on resonator balancing and controlling the etching process of the gyroscope quartz resonator. The necessary application software (SW) for the automatic process control system for balancing gyroscope resonators is considered separately. The paper states that to build the first version of the automatic process control system for balancing resonators, it is recommended, as an intermediate step, to modernise and work out the “advising” automatic process control system, which, in the development of the existing locally automatic process control system, should be supplemented by solving the following important tasks: increasing the accuracy of determining physical parameters, calculating the efficiency of the ongoing balancing operation and estimating the effective control of the ion-plasma source. In the considered automatic process control system for balancing the resonators of the solid state wave gyroscopes (SSWG), it is not supposed to completely exclude the system operator’s role and importance. He performs the primary check of the stand, the installation of the resonator in the stand, as well as the initial setup. Automation at the first stage will consist of closing the operations of determining the physical parameters, calculating the balancing efficiency and ion-plasma etching of the quartz resonator. The closure of these operations is carried out with the help of application software installed on the central control computer of the automated workplace of the balancing system operator.
Read full abstract