Located on the border between the NW Cameroon and Mayo-Kebbi domains in northern Cameroon, the Balda pluton is a deformed alkaline granite. Due to its unique location and geological features, it holds crucial information for understanding the evolution of the Central African Orogenic Belt (CAOB), which remains poorly understood. This multidisciplinary study combines field data, microscopic observations, Anisotropy of Magnetic Susceptibility (AMS), and U-Pb zircon dating to constrain the geodynamic evolution of the CAOB.The Balda pluton is a NNE-SSW elongated pluton consists mainly of aegirine-riebeckite granite and leucogranite. It displays diverse magnetic susceptibility values (Km) spanning from 0.19 x 10-3 to 21.98 x 10-3. Notably, 93 % of the Km values exceed 5 × 10-4SI, indicating a prevalence of mixed paramagnetic and ferromagnetic mineralogy (such as magnetite-rich). This observation is supported by microscopic examinations and K-T curves. An analysis of AMS unveils high P% values (2.8 to 58.7 %, with a mean of 15 %) and prevalent oblate magnetic fabrics (68 %). The magnetic foliation generally aligns with the field foliation and has steep dips ranging from NNE to NE or from SSW to SW and magnetic lineations exhibit shallow plunges (<35°) from SSW to SW. Microscopic analysis reveals high-temperature, solid-state deformation microstructures, indicating post-emplacement deformation processes and the presence of kinematic markers consistent with sinistral shear. Zircon grain analysis reveals two distinct types: “bright” and “dark.” These types differ in both their appearance under cathodoluminescence and their chemical composition. Bright zircons yield a U-Pb age of 732.7 ± 7.5 Ma, interpreted as the pluton emplacement age. Dark zircons are younger (ca. 680 Ma), suggesting a later tectono-metamorphic or alteration event.The integration of these results in a larger geodynamic context suggests that the Balda pluton formed within a syn-orogenic extensional back-arc basin. This emplacement was followed by significant post-emplacement deformation characterized by sinistral simple shear-dominated transpression likely related to the continental collision (ca. 680 Ma) of the NW Cameroon and Mayo-Kébbi domains.
Read full abstract