Leading phytopathological research is focused on managing seed-borne pathogens of rice through the utilization of engineered nanomaterials. Herein, blue laser-induced topo-morphologically nano-advanced copper salicylates (Cu-SA) (Cu/SA in 1:1 and 1:2 ratio) were prepared and evaluated for their augmented antifungal potential along seed invigoration effects in contrast to their prepared sonicated formulations. Laser disintegration on the Cu-SA (Cu/SA in 1:1 and 1:2 ratio) was achieved with high degree of success and precision using blue laser, which yielded uniformly distributed spherical nanoparticles with a narrow size distribution and better crystallinity than aqua-dispersed sonicated formulations. In vitro antifungal evaluation against seed-borne fungi of rice viz. Fusarium verticillioides and Fusarium fujikuroi revealed multiple times the augmented potential of laser-disintegrated nanoformulations (l-CuSA) than sonicated (s-CuSA) and bulk samples. Laser-induced nano-sodium bis(2-oxobenzoato)cuprate (II) (l-CuSA2) with Cu/SA in 1:2 ratio was the best to inhibit the in vitro fungal growth. Ultra-micrographs and fungal double-staining assay further rationalized the membrane disruption as the mode of action for the fungitoxicity. Nanopriming of fungal infested rice seeds with l-CuSA2 at 2500 μg/mL for 8 h showed the maximum reduction of seed rot (80.43%) and seedling blight (63.15%) with respect to control (untreated). The seed-invigorating factors of l-CuSA2 nanoprimed seeds were enhanced to maximum extent and showed the highest per cent germination (35.29%), shoot length (11.42%), root length (21.14%), dry weight (75.43%) and vigour index (81.04%) over the control. Inclusively, the seed nanopriming with l-CuSA2 proved as agro-compatible hypo-toxic semi natural nanoplatform for sustainable agriculture.
Read full abstract