This study aims to evaluate the in silico genomic characteristics of five species of the genus Planotetraspora: P. kaengkrachanensis, P. mira, P. phitsanulokensis, P. silvatica, and P. thailandica, with a view to their application in therapeutic research. The 16S rRNA comparison indicated that these species were phylogenetically distinct. Pairwise comparisons of digital DNA-DNA hybridization (dDDH) and OrthoANI values between these studied type strains indicated that dDDH values were below 62.5%, while OrthoANI values were lower than 95.3%, suggesting that the five species represent distinct genomospecies. These results were consistent with the phylogenomic study based on core genes and the pangenome analysis of these five species within the genus Planotetraspora. However, the genome annotation showed some differences between these species, such as variations in the number of subsystem category distributions across whole genomes (ranging between 1979 and 2024). Additionally, the number of CAZYme (Carbohydrate-Active enZYme) genes ranged between 298 and 325, highlighting the potential of these bacteria for therapeutic research applications. The in silico physico-chemical characteristics of cellulases from Planotetraspora species were analyzed. Their 3D structure was modeled, refined, and validated. A molecular docking analysis of this cellulase protein structural model was conducted with cellobiose, cellotetraose, laminaribiose, carboxymethyl cellulose, glucose, and xylose ligand. Our study revealed significant interaction between the Planotetraspora cellulase and cellotetraose substrate, evidenced by stable binding energies. This suggests that this bacterial enzyme holds great potential for utilizing cellotetraose as a substrate in various applications. This study enriches our understanding of the potential applications of Planotetraspora species in therapeutic research.