Glycosylation, a general post-translational modification for fungal cellulase, has been shown to affect cellulase binding to its substrate. However, the exact impact of glycosylation on cellulase-lignin interaction remain unclear. Here, we demonstrated that the lignin isolated from tetrahydrofuran-pretreated corn stover exhibits strong adsorption capability to cellulase due to its negatively charged and porous structure. For the cellulases with varying glycosylation levels, the less-glycosylated protein showed high adsorption capability to lignin, and that trend was observed for the main cellulase components secreted by Penicillium oxilicum, including endoglucanase PoCel5B, cellobiohydrolase PoCel7A-2, and β-glucosidase PoBgl1. Additionally, N-glycan sites and motifs were examined using mass spectrometry, and protein structures with N-glycans were constructed, where PoBgl1 and PoCel7A-2 contained 13 and 1 glycosylated sites respectively. The results of molecular dynamics simulations indicated that the N-glycans impacted on the solvent-accessible surface area and secondary structure of protein, and the binding conformation of lignin fragment on cellulase, resulting in a decrease in binding energy (14 kcal/mol for PoBgl1 and 13 kcal/mol for PoCel7A-2), particularly for van der Waals and electrostatic interaction. Those findings suggested that glycosylation negatively impacted the lignin-cellulase interaction, providing a theoretical basis for the rational engineering of enzymes to reduce lignin-enzyme interaction.