Tolerance to the pink snow mould resulting from Microdochium nivale infection is an essential trait of triticale (x Triticosecale) for winter survival. In the present study, we aimed to verify whether the presence and concentration of free and cell wall-bound phenolic acids are important factors in triticale responses to M. nivale infection. Based on 3 years’ testing of triticale tolerance, 2 out of 92 doubled haploid triticale lines derived from ‘Hewo’ × ‘Magnat’ F1 hybrid were selected, which are the most tolerant and the most sensitive to M. nivale infection. Plants were grown along with their parents under controlled conditions, pre-hardened and cold-hardened, while non-hardened plants served as the control. Hardened plants were covered with the artificial snow-imitating covers and inoculated with M. nivale mycelium, while the control plants were treated the same way except the infection. The aim of the study was to identify differences in the initial content and composition of phenolics under the influence of applied stresses. Conducted HPLC analysis showed that the most abundant were ferulic, rosmarinic, chlorogenic, sinapic, and trans-cinnamic acids. The contents of most of phenolics depended on genotype and growth conditions. Two cell wall-bound sinapic and trans-cinnamic acids, could be indicated as potentially related to the increased snow mould tolerance of winter triticale seedlings. A correlation between the total phenolic levels with the tolerance was not found; however, the proportion between the total levels of cell wall-bound and free phenolic compounds under low temperature could play a role prior to M. nivale infection.
Read full abstract