As a breast cancer subtype with high mortality in women, the efficient treatment of Triple-negative breast cancer (TNBC) is still a challenge due to its unique metastatic mode and poor prognosis. In this study, we developed a biomimetic nanodelivery system (denoted as GTDC@M-R NPs) based on erythrocyte membrane (M)-camouflaged graphene oxide quantum dots (GOQDs, G) for TNBC therapy. The TAT (T) and RGD (R) peptides were used to endow targeting accumulation ability of Gamabufotalin (CS-6, C) and doxorubicin (DOX, D) in tumor tissue. In vitro assay indicated good biocompatibility, prolonged blood circulation time (3-fold longer than GT NPs), and effectively enhanced cell and nucleus targeting capability of this nanosystem. Fluorescence activated cell sorter (FACS) analysis indicated that the combination of DOX and CS-6 induced TNBC cell apoptosis more than 89 % under the ratio of 10:1. In vivo assay indicated that the accumulation of GTDC@M-R NPs in tumor sites increased about 2-fold compared to naked GTDC NPs, which was accompanied by high tumor apoptosis rates through blocking chemotherapy-activated cyclooxygenase-2 (COX-2) and enhancing DOX's anti-tumor activity of chemical drugs (85%). Moreover, comparing with the control, the average number of lung metastatic nodules in tumor-bearing mice reduced 84%, the molecular mechanism of which is related to the down expression of COX-2, matrix metalloproteinase 9 (MMP9) and vascular endothelial growth factor (VEGF). Taken together, our results proved that the developed GTDC@M-R NPs can inhibit the growth and suppress metastasis of TNBC, which broaden our insights into the application of combinational strategy for efficient TNBC therapy. Statement of SignificanceIn this study, we developed a biomimetic nanodelivery system (denoted as GTDC@M-R NPs) based on erythrocyte membrane (M)-camouflaged graphene oxide quantum dots (GOQDs, G) for TNBC therapy. The TAT (T) and RGD (R) peptides were used to endow targeting accumulation ability of Gamabufotalin (CS-6, C) and doxorubicin (DOX, D) in tumor tissue. These GTDC@M-R NPs indicated synergistic chemotherapy against TNBC cells through the precise cell and nuclear targeting, immune escape, and improved DOX sensitivity. A effective inhibition of tumor growth and metastasis was achieved by inhibiting Bcl-2/BAX, COX-2 and VEGF related signal pathways. Our finding suggests that the developed GTDC@M-R NPs present great treating effects in the preclinical models of TNBC, which broaden our insights into the application of combinational strategy for efficient TNBC therapy.