Triply periodic minimal surface (TPMS) structures have attracted significant attention owing to their smooth surface configuration and parametric modeling properties. In this study, photo-curing 3D printing was employed to generate diamond-type TPMS structures, and micro-CT scanning revealed the presence of internal defects within the 3D printed TPMS structures. Two key design variables were explored: volume fraction and unit cell size. Quasi-static compression experiments were conducted to delve into the compression properties and energy absorption capabilities of the 3D printed TPMS structures. The findings reveal that increasing the volume fraction significantly enhances the compressive modulus, ultimate strength, and energy absorption capacity of TPMS structures. Additionally, increasing the cell size improves compression properties and energy absorption per unit volume. To predict the coupling effect of volume fraction and unit cell size on the compression performance of TPMS structures, a bivariate quadratic regression model was established. In addition, TPMS structures were subjected to load-unload cyclic experiments, shedding light on the evolution patterns of residual strain and hysteresis energy during cyclic loading. It provides insights into the design of reusable and fatigue-resistant diamond-type TPMS structures for various engineering applications.
Read full abstract