This study aimed to explore the potential bind of Receptor Activity-Modifying Protein 3 (RAMP3) with atypical chemokine receptor 2 (ACKR2), and their cooperative regulation on the degradation of the immunosuppressive chemokine CCL2 in the tumor microenvironment of HCC. Bioinformatic analysis was conducted using available bulk-tissue RNA-seq, single-cell RNA-seq, and protein–protein interaction datasets. Human HCC cell line Huh7 and HepG2 and mouse HCC cell line Hepa1-6 were utilized for experiments. Results showed that RAMP3 binds with ACKR2 in HCC tumor cells and promotes the membrane distribution of ACKR2 through RAB4-positive vesicles. RAMP3 promotes CCL2 scavenging through ACKR2 in HCC cells. Mouse RAMP3 inhibited the proliferation of mouse liver cancer cell line (Hepa1-6)-derived syngeneic tumors through ACKR2, reduced the intratumoral concentration of CCL2 in the tumor, and inhibited the phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3) and protein kinase B (AKT). In addition, mouse RAMP3 inhibited CD11b+/Gr-1 + myeloid cell infiltration and neovascularization in the tumors through ACKR2. In TCGA-LIHC, RAMP3low/ACKR2low group had the worst progression-free interval (PFI), while the RAMP3high/ACKR2high group had the best overall survival (OS). In summary, restoring RAMP3 expression in HCC cells may generate synergistic support for the anticancer effect of ACKR2.
Read full abstract