Presently, the field of plant breeding is in the genomics era, where innovative techniques are being integrated to accelerate and enhance the efficiency of breeding. Traditional plant breeding methods rely on maintaining plant germplasm with desirable agronomic traits from distinct plants produced through crosses or mutagenesis. However, advancements in genetic engineering encompass all forms of genetic modification through recombinant DNA technology (RDT) and cell fusion mechanisms. These approaches shed light on areas involving mutant organisms, DNA replication, genetic linkage resolution, genetically modified organisms (GMOs), protein sequencing, functional genomics, and computational genomics alterations in genetic engineering. The integration of structural genomics into breeding and eugenics analysis has resulted in a vast knowledge base on crop genetics, species divergence, and molecular origin of traits, as well as the evolutionary history of crop lineage from ancient ancestral species. The genomic data and advancements have proven essential in identifying rare genes, alleles, or local lesions crucial to significant agronomic traits, thereby expediting breeding cycles. This article aims to explore the potential of emerging genetic engineering technologies, including synthetic biology and genome editing, to further advance crop genetics and plant breeding.
Read full abstract