The CD47-SIRPα signaling has been acknowledged as a significant immune checkpoint and CD47 blocking has been proved as a potential therapeutic strategy for the treatment of solid tumor. However, the potential application of CAR-T cells secreted antibody fragment simultaneously in solid tumor is rarely explored. In this study, we searched bioinformatic databases and investigated the characteristics of CD47 in solid tumors. Then we consulted bioinformatic databases to design, optimize and construct a novel MsC-CAR which could target MAGE-A1 and self-secrete CD47-scFv. The engineering T cells containing MsC-CAR were transfected, verified and characterized. The tumor-inhibitory role of MsC-CART cells was further determined in vitro and in vivo. The results showed that MsC-CARs were successfully constructed and MsC1-CARs demonstrated the preferable features of recognizing MAGE-A1 and secreting CD47-scFv. Engineering T cells transfecting with MsC1-CAR (MsC1-CART cells) exerted the prominent tumor-inhibitory effectiveness, both in different cancer cell lines and LUAD xenograft tumors. The present data highlighted that MsC1-CART cells elaborately combined the adoptive cellular immunotherapy and immune checkpoint inhibitor therapy, may represent a new direction for the treatment of MAGE-A1 positive solid tumors.
Read full abstract