The relative contribution of factors responsible for the environmental exposure of active pharmaceutical ingredients (APIs) is of interest for appropriate remedial measures. This study was carried out to evaluate the post-lockdown levels of APIs in water resources, in comparison to our previously published study from 2016. The environmental levels of 28 drugs from different classes were analyzed in surface water (Yamuna River), aquifers, and leachate samples collected from 26 locations in Delhi-NCR using the previously validated liquid chromatography-mass spectrometry (LC-MS/MS) methods. In addition, the prevalence of antimicrobial resistance in coliforms isolated from targeted surface water samples was also studied. This study revealed that more than 90% of APIs, including antibiotics, decreased drastically in both surface water and aquifers compared to our previous data. Selected samples subjected to antimicrobial resistance (AMR) analysis revealed the presence of cephalosporin-resistant coliform bacteria. Tracing cephalosporins in the surface and drain water samples revealed the presence of ceftriaxone in the drain and water samples from Yamuna River. Higher levels of ceftriaxone in landfill leachate were also found, which werefound to be associated with coliform resistanceand indicatethe un-segregated disposal of medical waste into landfills. Social restrictions enforced due to COVID-19 resulted in a drastic decrease in antimicrobials and other APIs in aquatic water resources. Increased ceftriaxone and cephalosporin resistance was seen in coliform from surface water and drain, indicating the possibility of hospital waste and treatment-related drugs entering Yamuna River. Enforcement of the regulations for the safe disposal of antibiotics at hospitals and preliminary disinfection of hospital sewage before its inflow into common drains might help minimize the spread of antibiotic resistance in the environment.
Read full abstract