Green synthesized nanoparticles (NPs) are an eco-friendly and cost-effective approach to reduce heavy metal stress in plants. Among heavy metals, cadmium (Cd) possesses higher toxicity to the crops and ultimately reduces their growth and yield. The current study aims to evaluate the effectiveness of green synthesized SiO2NPs to reduce toxic effects of Cd in melon (Cucumis melo) by regulating physiological parameters, enhancing antioxidant enzyme activity, and modulating stress-related gene expression. The SiO2NPs were synthesized using Artemisia annua plant extract having spherical shape and size within the range of 40-70 nm and characterized using advanced spectroscopic and analytical techniques. The application of SiO2NPs (75mg/L) significantly improved physiological parameters such as shoot length (SL), root length (RL), leaf fresh weight (LFW), root fresh weight (RFW), leaf dry weight (LDW) and root dry weight (RDW) by 14%, 20%, 15%, 16%, 14%, and 28%, respectively, compared to Cd-stressed plants. Photosynthetic pigments (chlorophyll and carotenoids) showed a notable increase of 15% and 40%, respectively. Furthermore, the activities of antioxidant enzymes such as SOD, POD, CAT, and APX were enhanced by 28.67%, 35.45%, 32.07%, and 42.75%, respectively. In addition, applying SiO2NPs increased the concentration of macronutrients N, P, and K by 33%, 40%, and 37%, respectively, compared to Cd-stressed plants. Moreover, SiO2NPs upregulated the expression of several stress-related genes and reduced Cd accumulation in shoots and roots. This study reveals that green synthesized SiO2NPs effectively reduced the Cd toxicity in melon by improving morphological and physiological parameters, enhancing antioxidant enzyme activity, and regulating the expression of stress-related genes. These findings suggest that green synthesized SiO2NPs could play a crucial role in sustainable agriculture by protecting crops from heavy metal stress.
Read full abstract