The photocatalytic reduction of CO2 to high-value fuels has been proposed as a solution to the energy crisis caused by the depletion of energy resources. Despite significant advancements in photocatalytic CO2 reduction catalyst development, there are still limitations such as poor CO2 adsorption/activation and low charge transfer efficiency. In this study, we employed a defect-induced heterojunction strategy to construct atomic-level interface Cd-O bonds and form Bi2MoO6/Zn0.5Cd0.5S heterojunctions. The sulfur vacancies (VS) formed in Bi2MoO6/Zn0.5Cd0.5S acted as activation sites for CO2 adsorption. While the interfacial stability provided by the Cd-O bonds served as an electron transfer channel that facilitated the movement of electrons from the interface to the catalytic site. The VS and Cd-O bonds simultaneously influence the distribution of charge, inducing the creation of an interface electric field that facilitates the upward displacement of the center of the d-band. This enhances the adsorption of reaction intermediates. The optimized Bi2MoO6/Zn0.5Cd0.5S heterostructure exhibited high selectivity and stability of photoelectrochemical properties for CO, generating 42.97 μmol⋅g−1⋅h−1 of CO, which was 16.65-fold higher than Zn0.5Cd0.5S under visible light drive. This research provides valuable insights for designing photocatalyst interfaces with improved CO2 adsorption conversion efficiency.
Read full abstract