Muscular dystrophies in dogs and cats represent a heterogeneous group of inherited, sometimes congenital, but infrequently diagnosed, progressive neuromuscular disorders. A correct identification and characterization of canine and feline muscular dystrophies could increase diagnostic and treatment strategies for veterinary neurologists and could identify useful animal models for the study of human dystrophies. However, in dogs and cats, diagnosis of muscular dystrophies is challenging due to a nonspecific clinical phenotype and pathological lesions, thus is most likely underestimated. We performed immunofluorescence and Western blot techniques using a wide panel of antibodies against proteins involved in human dystrophies (dystrophin mid-rod and carboxyterminal domain, α, β, γ, and δ-sarcoglycan, α-dystroglycan, caveolin-3, emerin, merosin, dysferlin, calpain-3, spectrin epitopes), on 9 canine and 3 feline muscle biopsies characterized by myopathic changes. Dystrophin deficiency was detected in 3 dogs and 2 novel canine muscular dystrophies have been identified, characterized by deficiency of caveolin-3 and calpain-3, respectively. In 2 cats, deficiency of β-SG and carboxyterminal domain of dystrophin in all muscle fibers has been detected. Performing immunofluorescence and Western blot analyses with a wider panel of antibodies allowed a correct identification of muscular dystrophies in dogs and cats and provides a direction for subsequent targeted genetic testing.
Read full abstract