Any orientable real hypersurface M of a complex Hopf manifold (carrying the locally conformal Kaehler (l.c.K.) metric discovered by I.Vaisman [33]) has a natural f-structure P as a generic Cauchy-Riemann submanifold; we show (cf. our § 5) that if P anti-commutes with the Weingarten operator, then the type number of the hypersurface is less equal than 1. Moreover, M carries the natural almost contact metrical structure observed by Y.Tashiro [30]; if its almost contact vector is an eigenvector of the Weingarten operator corresponding to a nowhere vanishing eigenfunction and the holomorphic distribution is involutive, then M is foliated with globally conformai Kaehler manifolds (cf. our § 5), provided that some restrictions on the type number of M are imposed. We derive (cf. our § 6) a «Simons type» formula and apply it to compact orientable hypersurfaces with non-negative sectional curvature (in a complex Hopf manifold) and parallel mean curvature vector. Several examples of submanifolds of l.c.K. manifolds are exhibited in § 3. Our § 7 studies complex submanifolds of generalized Hopf manifolds; for instance, we show that the first Chern class of the normal bundle of a complex submanifold having a flat normal connection is vanishing.