A hydrothermal approach was adopted to synthesize tungsten oxide (WO3) nanocatalysts with tailored morphology, using oxalic acid (H2C2O4) and hydrochloric acid (HCl) as precursors. This precursor-driven method yielded two distinct WO3 catalysts with unique structural and functional properties, viz. rod-shaped WO3-ox and nanoflower-shaped WO3-h. Characterization by FESEM and XRD revealed variations in morphology and crystallite size, contributing to their specialized catalytic applications. UV-Vis spectroscopy confirmed strong UV absorption by WO3-ox at 283.57nm with an optical band gap of 2.86eV, making it ideal for photocatalytic activities. Electrochemical analysis demonstrated that WO3-ox effectively drives the hydrogen evolution reaction (HER), while WO3-h is more suitable for the oxygen reduction reaction (ORR), an essential process in microbial fuel cells (MFCs). In practical applications, WO3-ox achieved an 83.9% degradation efficiency of methylene blue (MB) within 3h, validating its high photocatalytic efficacy for wastewater treatment. Meanwhile, WO3-h, utilized as a cathode catalyst in MFCs, significantly enhanced system performance, elevating chemical oxygen demand (COD) removal efficiency to 78.7% and improving coulombic efficiency by 3%. These findings underscore the potential of precursor-driven hydrothermal synthesis for optimizing WO3 catalysts tailored for energy and environmental applications, specifically in hydrogen production and sustainable wastewater treatment systems.
Read full abstract