The radiographic inspection plays a crucial role in ensuring the casting quality for improving the service life under harsh environments. However, due to the low-contrast between the defects and the image background, the random spatial position distribution, random shapes and aspect ratios of the defects, the development of an accurate defect automatic detection system is still challenging. To address these issues, this paper proposes a novel framework for low-contrast and random multi-scale casting defect detection, which is referred to as adaptive global dynamic detection transformer (AGD-DETR). A novel defect-aware data augmentation method is first proposed to adaptively highlight the feature of the low-contrast defect boundary. A multi-attentional pyramid feature refinement (MPFR) module is then established to refine and fuse the multi-scale defect features of random sizes. Afterwards, a novel global dynamic receptive fusion-transformer (GDRF-Transformer) detection scheme is designed to perform the global perception and feature dynamic extraction of complex internal casting defects. It includes 4D-anchor query and cross-layer box update strategy, query rectification by prior information of defect aspect ratio, and global adaptive-feed forward network (GA-FFN). A dataset comprising turbine blade casting defect radiographic (TBCDR) images, is used to demonstrate the high efficiency of the proposed AGD-DETR. The obtained results show that the proposed method can accurately capture the spatial position distributions and complex defect shapes. Furthermore, it outperforms existing state-of-the-art defect detection methods.